A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli
نویسندگان
چکیده
Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).
منابع مشابه
Polyhydroxyalkanoate production in recombinant Escherichia coli.
The bacterial species Escherichia coli has proven to be a powerful tool in the molecular analysis of polyhydroxyalkanoate (PHA) biosynthesis. In addition, E. coli holds promise as a source for economical PHA production. Using this microorganism, clones have been developed in our laboratory which direct the synthesis of poly-beta-hydroxybutyrate (PHB) to levels as high as 95% of the cell dry wei...
متن کاملEngineering the xylose‐catabolizing Dahms pathway for production of poly(d‐lactate‐co‐glycolate) and poly(d‐lactate‐co‐glycolate‐co‐d‐2‐hydroxybutyrate) in Escherichia coli
Poly(lactate-co-glycolate), PLGA, is a representative synthetic biopolymer widely used in medical applications. Recently, we reported one-step direct fermentative production of PLGA and its copolymers by metabolically engineered Escherichia coli from xylose and glucose. In this study, we report development of metabolically engineered E. coli strains for the production of PLGA and poly(d-lactate...
متن کاملComplete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application
BACKGROUND Poly-beta-hydroxybutyrate (PHB) mobilization in bacteria has been proposed as a mechanism that can benefit their host for survival under stress conditions. Here we reported for the first time that a stress-induced system enabled E. coli, a non-PHB producer, to mobilize PHB in vivo by mimicking natural PHB accumulation bacteria. RESULTS The successful expression of PHB biosynthesis ...
متن کاملBiosynthesis of poly(3-hydroxybutyrate- co-3-hydroxyalkanoates) by metabolically engineered Escherichia coli strains.
Biosynthesis of polyhydroxyalkanoates (PHAs) consisting of 3-hydroxy-alkanoates (3HAs) of 4 to 10 carbon atoms was examined in metabolically engineered Escherichia coli strains. When the fadA and/or fadB mutant E. coli strains harboring the plasmid containing the Pseudomonas sp. 61-3 phaC2 gene and the Ralstonia eutropha phaAB genes were cultured in Luria-Bertani (LB) medium supplemented with 2...
متن کاملProperties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains.
To prepare medium-chain-length poly-3-hydroxyalkanoates (PHAs) with altered physical properties, we generated recombinant Escherichia coli strains that synthesized PHAs with altered monomer compositions. Experiments with different substrates (fatty acids with different chain lengths) or different E. coli hosts failed to produce PHAs with altered physical properties. Therefore, we engineered a n...
متن کامل